

Transistor Fixture Families

- Focus manufactures <u>standard</u> and <u>customized</u> Test Fixtures for packaged small, medium and high power transistors
- Two types of Fixtures are available:
 - Microstrip Fixtures, model PTJ-x-y
 - Coaxial Fixtures, model MLTF-x-y

Suffix "x-y" indicates

- Type of connector
- Frequency range
- Custom type

Fixtures for Load Pull

- Load Pull (and Noise) measurements use electro-mechanical Impedance Tuners
- The RF path between DUT and Tuner must be kept as short as possible, as to reduce insertion loss and maximize VSWR@DUT
- Therefore fixtures where the base extends beyond the RF connectors of the fixture are not suitable.
- Many, otherwise good, available fixtures suffer this handicap.
- Fixtures must be easily calibrated as two-ports and S-parameters of the input and output section must be available.

Fixtures not good for Load Pull

Example of fixture not suitable for load pull measurements

Fixtures *suitable* for Load Pull

Example of fixture suitable for load pull measurements

Focus Test Fixtures to 18GHz

Microstrip Fixtures

- •One fixed block, one adjustable
- •block
- •Mstrip transformers and bias networks on fixture
- •Available with 7/16, N, 7 and 3.5
- •DUT fixed using a clamp
- •TRL Calibration Standards

Coaxial Fixtures

- •Minimum Loss; No dielectric
- •Only 50Ω
- •DUT leads clamped into coax
- •APC-7, N, 7/16
- •TRL Calibration Standards

Overview Test Fixtures

Microstrip – Standard and Custom

DC-4GHz SMA, N, 3.5, 7, 7/16

DC-6GHz SMA, N, 3.5, 7, 7/16

PTJ-XDC-12GHzSMA, N, 3.5, 7

PTJ-Ku DC-18GHz SMA, N, 3.5, 7

Coaxial – Low Loss

MLTF-C DC-6GHz N, 7, 7/16

DC-12GHz N, 7

MLTF-Ku DC-18GHz N, 7

Microstrip Test Fixtures

PTJ-0 with APC-7 and N connectors

PTJ-0/N with water cooling

Microstrip Fixtures PTJ-Ku-7 (Operating to 18 GHz)

Overall S-Parameters

PTJ-Ku-7

-17.5dB

Total Reflection

Insertion Loss of Input and Output sections:

 $IL = 0.06 \cdot f [GHz] dB$

Overall S-Parameters

PTJ-X-7

Total Reflection

Insertion Loss of Input and Output sections:

 $IL = 0.06 \cdot f [GHz] dB$

Overall S-Parameters

PTJ-C-SMA

Total Reflection

Insertion Loss of Input and Output sections:

 $IL = 0.05 \cdot f [GHz] dB$

Microstrip Fixtures PTJ-C in 7/16 with Transistor Clamps & Water Cooled Insert

Microstrip Fixtures PTJ-C with Adjustable Transistor Clamp

High Power Test Fixture PTJ-C with Water Cooled Inserts (>250 Watts)

Microstrip Fixtures with Water Cooled Transistor Inserts

Microstrip Fixtures PTJ-X-N in Load Pull Operation

Microstrip Fixtures Complete with Transformers, Bias Networks, & Harmonic Traps

Focus calibration
Software allows
accurate
characterization of
input and output
section of this fixture

Calibrating Microstrip Fixtures

Use Adapter Removal to measure S-parameters of fixture half, since TRL fails when harmonic traps are included on the matching networks

Measure Input section

Measure Output section

Coaxial Fixtures, MLTF*-X-N

MLTF-X-N with Accessories*

*TRL Calibration Standards and Transistor Insert

MLTF-X-N

Insertion Loss per Half: 0.02dB @ 2GHz

MLTF-Ku-7 Ready to Ship

S-parameters of input and output sections

MLTF with Insert

TRL Calibration Standards

MLTF-Ku-7

Total Reflection

DC-18 GHz

S2P of Total Fixture

Insertion Loss of Input and Output sections:

 $IL = 0.0033 \cdot f [GHz] dB$

PMT & MLTF Performance

Using MLTF and PMT allows us to generate extremely high Γ (~0.98) @ DUT ref. plane

