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Abstract - This paper presents recent advances in the 
state-of-the-art of Neural Network modeling of microwave 
FET devices. Enhanced accuracy of the Adaptive 
Knowledge-Based Neural Network (AKBNN) model is shown 
by eomparing predicted load-pull performance of the device 
to measurements in an automated harmonic Load-pull 
system. Test devices are a 1.2" HFET measured at 2.2 
GAq and a 4.8mm pHEMT at 8.4 GHz Modeled versus 
measured comparisons include power-added efficiency and 
output power under fundamental frequency and second and 
third harmonic frequency tuning. The effectiveness of this 
modeling approach for the design of high4liciency power 
amplifiers operating in Class-E or Class-F modes is 
discussed. 

lndex Terms - Impedance measurement, neural network 
applications, modeling, microwave power FETs, power 
amplifiers. 

I. INTRODUCTION 

Harmonic tuning is a well-known technique for 
improving the power-added efficiency (PAE) of power 
amplifiers. This is an important performance feature for 
some terrestrial applications where battery life needs to be 
extended, and for many space applications where prime 
spacecraft power is limited. It has been shown 
theoretically [l]  and demonstrated experimentally [2] that 
significant improvement in power-added efficiency is 
possible by using the harmonic frequency components at 
the device drain to shape the drain voltage and current 
waveforms, thus keeping the instantaneous current- 
voltage product low. The practical implementation 
usually takes the form of a Class-F or Class-E amplifier 
and focuses on design of the correct load impedance at the 
fundamental and second and third harmonic frequencies 
for opti" PAE performance. The higher-order 
harmonics have progressively smaller impact on the 
overall performance and may lead to unnecessary 
complications in the output matching network. 

The key to achieving cost-effective design of a high- 
efficiency power amplifier is to have a CAD compatible 

FET device model that maintains accuracy over a broad 
range of power levels and bias voltage conditions. 
Harmonic generation is necessary for proper waveform 
shaping at tbe drain, and the voltage levels at the 
harmonic frequencies must be accurately modeled as a 
function of load impedance as well as gate and drain bias. 
In addition, the drain-source current at the quiescent bias 
point (Class-A to Class-B) will have an impact on 
efficiency performance and is a useful parameter to 
examine during circuit optimization in the design phase. 
This requires tbat the device model maintain accuracy in 
gain compression up to saturation as well as gate biases 
fiom Class-A operation down to pinch-off. Device 
models based on closed-form equations have typically 
shown limitations in both of these regions, which 
compromises a full optimiition of amplifier performance. 

To overcome these limitations we have developed a 
new adaptable neural network FET (ANNFET) model that 
has the capability of being dynamically reconfigwed by 
the user [3]. A detailed comparison is made between the 
model predictions under computer simulated harmonic 
load pull conditions, and the measurements obtained in an 
automated harmonic load pull system. The comparisons 
are performed at the device level, without the additional 
uncertainties introduced by a full amplifier circuit. 

This CAD compatible Neural Network device model 
will contribute to power amplifier design technology in 
several areas. First, it will enable accurate optimization 
over operating regions where existing models have shown 
weaknesses. Second, it will reduce the time and expense 
of  experimental load pull measurements as preliminary 
steps to power amplifier design. In addition, it will allow 
designers to explore the potential benefits of harmonic 
tuning on the gate side of the circuit without the hardware 
expense of including this feature in existing load pull 
setups. Finally, it may be applied to high-efficiency 
amplifier design at Ka-band and higher frequencies where 
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experimental harmonic load pull measurements are not 
always feasible. 

The organization of this paper is as follows. Section I1 
gives a brief outline of how the ANNFET model was 
dynamically configured for the given application. Section 
I11 gives a description of the harmonic load pull system. 
Finally, Section IV will present a detailed comparison 
between the model predictions under computer simulated 
harmonic load pull conditions, and the measurements 
obtained in the automated harmonic load pull system. 
Results will include power-added efficiency and output 
power under fundamental frequency and second and thud 
harmonic frequency tuning. 

II. THE CONFIGURATION OF THE ANNFET 

A. The ANNFET Model 

The M E T  model used in this work was dynamically 
configured with Ids, Cgs and Cgd as nonlinear elements 
realized with Knowledge-Based Neural Networks 
(KBNNs) as shown in Fig. 1, while all the other elements 
were specified as static lumped linear elements. This 
network was implemented into Agilent's Advanced 
Design System (ADS), where we used the harmonic 
balance method mM) for steady-state analysis of 
nonlinear periodic circuits. 

Drain 

L 

Fig. 1. Circuit representation of three output panuneten at 
neural network output layer where y=[Q,, b, QJT . E+ 
network is used to supply c-ts and charges as its output u1 
the HBM when given V, and V, as inpuls. 

- - 

E. The Knowledge-Based Neural Network @NN) 
Architecture and its Training. 

The KBNN structure is known for its ability to utilize 
microwave information in the form of empirical functions 
or analytical approximations incorporated into the neural 
network. We also took advantage of the KBNN ability to 
extrapolate beyond measured data, which reduced the 
need for a large set of training data. The fundamentals of 
knowledge-based neural network (KL3") structures have 
been developed in the literature [4]; as a result, we will 
briefly review the important aspects of the KBNN 

structure and the empirical functions incorporated into The 
knowledge layer as well as the boundary layer. 

The KBNN structure used in this work is a seven- 
layered non-fully connected structure shown in Fig 2. 

1.d' 

vp.; Vda 

Fig. 2. The KBNN Structure. 

The seven layers in the KBNN are referred to as an input 
layer X, a knowledge layer K, boundary lfym E, region 
layer R, normalized region layer R ,  normalized 
knowledge layer K' and output layer Y. The Knowledge 
layer K consists of information in the form of empirical 
functions Y(.), 

(1) i =  1,2, ..., Nk ki = y,(x,wJ, 

x is a vector of inputs x,, i = 1,2,. . .,N, and w, is a vector of 
parameters in the empirical formula. In the case of drain 
current Ids, the following equation developed by I. 
Angelov [5]  IS used as the knowledge equation in the 
Knowledge layer; 

y = P,W, - vpk) + PZW, - V d 2  +P3W, - VPd3 (2) 

T~.(A.~.L..)= h =&d+tanh(Y3)(1+ Avd(tanh(avd) (3) 

This equation can successfully model a typical family of 
IV curves, however, we needed to model JV curves well 
below pinch off. This work uses the Bayne equation [6] 
in conjunction with the Angelov equation. 

14.(Bayne1= ~ ~ = ~ ~ ~ + P ( v , - Z ~ * # ~ + ~ ~ ~ ) ( e x p ( ~ ~ ) - ~ ~  (4) 

This equation was combined with the Angelov expression 
for current in the Knowledge layer to produce a new 
expression capable of modeling a wider range of DC: IV 
curves. 

Ida~~ngclov)) ( l+ta~(S~V,-M~))+(  b~)) ( 5 )  
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Note that when the equations are combined, the term 
(l+tanh(S2Vp-M2)) allows the network to switch between 
(J&Mgclw)) and (by.)). There is a particular V, value 
that will cause the neural network to switch between one 
equation or the other. This switching mecbanism is 
controlled by the neural network through adjustment of 
the parameters S2 and M2. 

Knowledge equations were also needed for capacitance. 
Attempts were made to use the capacitance equations 
developed by Angelov, however, modifications were 
made to improve training of the network. The unique 
knowledge equation developed for gate-some 
capacitance is: 

Cr(napc) = c o ( ~ + ~ @ J o + p I c v ,  - m ( 1  + M ( P 2  +PIV&)) 

(6) 

The unique knowledge equation developed for gate-drain 
capacitance is: 

cgd(hF)= 

C , ( l + t a n h ( P . - P , V * ) ) ( l + ~ ( P 2 + P 3 V ~ ) ( ~ + ~ ~ 4 + ~ 5 ~ p ~ ~  

(7) 

These capacitance expressions were chosen to account for 
charge conservation. In addition, transcapacitance is 
avoided by calculating each capacitance as a function of 
the voltage across its local terminals. The resulting model 
is ensured to be charge-controlled. 

The boundary layer is represented by an arbitrary vector 
b that incorporates knowledge in the form of problem 
dependent boundary functions or, in the absence of 
boundary knowledge, as linear boundaries B,(x,v,). The 
weights in the boundary layer are represented by the 
adjustable parameters or coefficients in the boundary 
equation, noted as v, where v is a vector whose size is 
determined by the number of coefficients in the equation. 
Neuron i in tbis layer is calculated by 

b,=B,(x, vJ, where i=l ... Na (8) 

The boundary equation used in tbis work for the current is 
the derivative of the current expression with respect to 
both V, and Vdr; (a'W(aV,aV,). The associated 
boundary expression for the capacitance is the integral of 
the capacitance expression with respect to V,, given by 
(k&,,,aVp To train the KBNN we employed the 
Levenberg-Marquardt metbod to minimize the error 
function. The overall strength of tbis method is its general 
reliability in solving nonlinear least squares problems. 

nI. HARMOMC LOAD PULL SYSTEM 

A block diagram of the automated harmonic load pull 
system is shown in Fig. 3. A frequency synthesizer is 
used to establish the RF input signal. For OUI test devices 
the system required a driver amplifier after the synthesizer 
to set the cnrrect input power dynamic range. 

........................ .......................... ! CPlB CPIB 

........ ) GPIB 

Dualahannal - Poaerrnelbr 

Fig. 3. The automated harmonic load pull system. 

A low-pass filter is used to attenuate harmonic content 
from the driver before the signal enters the fmt directional 
coupler. A clean input signal is verified by an 
independent measurement with the spectrum analyzer. 

The system uses precision tuners fiom FOCUS 
Microwaves, Inc., consisting of source and load 
fundamental tuna, and a load barmonic tuner. 
Supporting test equipment to provide bias and read 
gate/drain current levels and sense gateldrain voltages is 
connected to the computer through a GPIB interface. The 
spectrum analyzer is included to monitor signs of device 
instability during power and efficiency contour 
measurements. 

N. MODELED VS MEASURED RESULTS 

Fig. 4 summarizes the measured and modeled results for 
a 1.2mm HFET measured at 2.2 GHz, and a 4.8" 
pHEMT at 8.4 GHz. The modeled results were derived 
from a computer simulation with the ANNFET model, 
using the source impedance determined by the load pull 
system. Computer optimization was done to h d  the load 
impedances for optimum power and efficiency 
performance, which converged to the same values as 
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determined experimentally from the load pull system. The 
MIC test substrate for the 4.8” device included a gate 
partial matching structure to transform the low input 
impedance to a higher level for effective matching with 
the source tuner. The modeled results include the effect 
of this network, as well as the gate and drain bond wires. 

Fig. 4. Model simulation vs. measurement for output power, 
gain, power-added efficiency for 1 . 2 m  WET at 2.2 GHz (top), 
and 4.8” pHEMT at 8.4 GHz (bottom). 

The model was extended to the confirmation of 
experimental harmonic load pull result8 under Class A to 
Class A/B bias conditions. The device model was 
terminated with the experimentally determined optimum 
fundamental source and load impedances. The drain side 
was then terminated with the experimental optimum 
harmnnic impedances as determined by harmonic phase 
sweep measurements. The measured vs modeled results 
for the 1.2mm and 4.8mm devices are shown in Table 1 
for two representative bias conditions. 

TABLE 1 
Measured vs Modeled Harmonic Load Pull Results 

V. CONCLUSIONS 

This work has presented new techniques for the Neural 
Network modeling of FET devices. The method has been 
applied to HFET and pHEMT devices up to X-hand, in 
Class A to Class AB bias conditions, with harmonic 
tuning, and demonstrated that useful performance 
predictions can be made for the modelig and 
optimization of harmonically tuned power amplifiers. 

ACKNOWXEDGEMENT 

The authors wish to acknowledge the support of the 
APL RALl Committee, and M. L. Edwards and R. S .  
Bohlic  of the RF Engineering Group. Thanks to L. Ellis 
and J. Will for device assembly and FOCUS Microwaves, 
Inc. for technical support. 

REFERENCES 
[I] F. H. Raub, “Maximum efficiency and output of Class-F 

power amplifiers”, IEEE Trans. Microwave Theory & 
Tech.,Vol.49,No.6,pp. 1162-1166,June2001. 

[2] Duvanaud, C., et al., “High-efficient Class-F GaAs FET 
amplifiers operating with very low bias voltages for use in 
mobile telephones at 1.75 GHz,” IEEE Microwave Guided 
Wave Lett., vo1.3, pp. 268-270, Aug. 1993. 

[3] B. Davis, C. White, M.A. Reece, N.L. Richardson, W.L. 
Tkompson U, L.A. Walker, Jr., and M.E. Bayne, 
“Dynarmcally configurable pHEMT model using neural 
networks for CAD’, IEEE MTT-S International Microwme 
Symposium Digest, pp. 177-180, Philadelphia, PA, 2003 

[4] F. Wang and Q. Zhang, “Knowledge-based neural models 
for microwave design,” IEEE Trans. Microwave Theory & 
Tech, vol. 45, pp, 2333 - 2343, 1997. 

[5] I. Angelov, H. Zmth, and N. Roman, “A new empiri,:al 
non-linear model for HEMT and MESFET devices”, IEEE 
Trans. Microwave Theory & Tech., vol. 40, pp. 2258.22156, 
1992 

[6] M. Bayne, “A Highly Efficient Approach to the 
Development and Implementation of a Charge-Controlled 
Large-Signal Knowledge-based Neural Network Model for 
HEW Devices”, Dissertation, Morgan State University, 
Dept.ECEJ992. 

1080 


